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1 Comparison to state of the art methods

Functionality comparison

In order to compare the functionalities of CoRegNet to other biological net-
work softwares, a table listing the functionallities of several frequently used
softwares is given in table 1. This table is focused on transcriptional network
analysis in the context of cancer genomics.

Co-regulator inference

In order to verify the proposed algorithm, a network of cooperative TF is re-
constructed from the large-scale transcriptional networks inferred by several
algorithms. These included : ARACNE [Margolin et al., 2006], CLR [Faith
et al., 2007], WGCNA [Langfelder and Horvath, 2008] and GENIE3 [Huynh-
Thu et al., 2010]. Based on the large-scale inferred bi-partite network, contain-
ing only edges from TF to other genes, a network of cooperative regulators is
constructed by setting an edge between two TF if they share more target genes
than expected by chance. All TF sharing at least one target gene were consid-
ered as potential co-regulators and tested using the same statistical selection
(Fisher’s test and multiple hypothesis testing correction). A similar approach
was used in a recent study to identify Transcriptional Modules to describe the
sets of TF involved in the same transcriptional programs [Fletcher et al., 2013].

The inferred pairs of co-regulators were compared to the protein interactions
referenced by four studies : the FANTOM screen for combinatorial TF [Ravasi
et al., 2010], the HIPPIE [Schaefer et al., 2012], HPRD [Prasad et al., 2009] and
STRING [Franceschini et al., 2012] protein interaction databases. The enrich-
ment of the inferred co-regulator networks in real protein-protein interaction is
reported in table 2.

In order to further investigate the relevance of these predicted cooperative
links between regulators, an evaluation of the predictive power of the inferred
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Network inference Regulatory data 
integration

Co-regulator 
prediction

Genomic data 
integration

Transcription 
factor activity

Interactive 
network 

visualization

Differential 
analysis availability

CLR yes no no no no no no Bioconductor 
(Minet)*

GENIE3 yes no no no no no no R script

WGCNA yes no no yes no
(module activity) no yes CRAN

RTN (ARACNE) yes no no yes no no yes Bioconductor

ROBNCA no yes no no yes no matlab script

PLSgenomics no yes no
(infers meta-tf) no yes no no CRAN

Bionet no no no no no no yes Bioconductor

Netbox no no no no no no yes python script

VAN no no no no no no yes R package

DEGraph no no no no no no yes Bioconductor

JActiveModule no no no no no yes yes Cytoscape

CorRegNet yes yes yes yes yes yes yes Bioconductor

Table 1: R packages and other tools for analyzing biological regulatory networks
in the context of cancer genomics. CLR [Faith et al., 2007], GENIE3 [Huynh-
Thu et al., 2010], WGCNA [Langfelder and Horvath, 2008], RTN [Fletcher et al.,
2013], ARACNE [Margolin et al., 2006], ROBNCA [Noor et al., 2013], PLSge-
nomics [Boulesteix and Strimmer, 2005], BioNet [Beisser et al., 2010], Netbox
[Cerami et al., 2010], VAN [Jayaswal et al., 2013], DEGraph [Jacob et al., 2010],
JActivemodule [Ideker et al., 2002]. *CLR has several third-party implementa-
tions.
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inferred co-regulators enrichment
FANTOM HIPPIE HPRD STRING

CoRegNet 2.43 2.6 2.75 3.75
GENIE3 1.63 1.83 1.74 2.83
WGCNA 1.5 1.55 1.6 2.62
CLR 1.51 1.69 1.59 2.17
ARACNE 1.44 1.49 1.5 1.8

Table 2: Co-regulation enrichement in protein interaction. Table of en-
richment, computed as Odds Ratio, of Protein-Protein interactions found among
inferred cooperative TF-TF. All enrichment are significant (Fisher’s exact test
α = 1%).

inferred co-regulators AUPR
FANTOM HIPPIE HPRD STRING

CoRegNet 1.54% 1.55% 1.54% 15.66%
GENIE3 0.78% 0.78% 0.78% 5.74%
WGCNA 0.83% 0.83% 0.83% 5.82%

CLR 0.80% 0.80% 0.80% 6.33%
ARACNE 0.77% 0.77% 0.77% 5.61%

Figure 1: Precision-Recall analysis for the predictions of Protein-
Protein interactions between co-regulators. a. Precision-Recall curves
computed using the predicted protein interaction in STRING as ground truth.
Bottom table reports the Area Under Precision Recall curve (AUPR).

co-regulators was carried out. The objective here is to determine wether these
cooperative links are able to predict PPI between two co-regulators. There-
fore, in the context of a supervised binary classification, inferred pairs of co-

3



regulators were ordered by the number of shared target genes. This score was
used to draw the Precision Recall curve which is shown in figure 1 using the
STRING database [Franceschini et al., 2012] as ground truth. It is to be noted
that STRING references experimentally identified protein interactions as well as
predicted interactions based on several types of protein analysis such as phylo-
genic or literature mining. Therefore, STRING is here considered as referencing
highly relevant functional relationships between proteins. These protein-level
associations have been successfully used for biological predictions of operon for
instance [Taboada et al., 2010]. This analysis was also done for the three other
PPI ressources. However, as these ressources reference a much smaller num-
ber of PPI (10 to 20 times less than STRING), no visual representation of the
Precision Recall curve is given here. Moreover, the AUPR, defined as the Area
Under the Precision Recall curve, gives only little information using these sparse
ressources (CoRegNet AUPR min: 1.54% max : 1.55% ; other methods min
: 0.76% max : 0.83%).

Transcription Factor Activity

The CoRegNet influence is more robust to noise in the network

The Transcription Factor Activity (TFA) of all regulators was computed using
the original inferred network. Noise was then added to the network by permuting
an increasing portion (5%, 10% and 20%) of the target genes of each TF. This
process was repeated 10 times resulting in 10 partially permuted network and
10 versions of noisy TFA for each levels of noise. The Pearson correlation of
each regulator was computed between the TFA of the noisy and of the original
networks. Figure 2 shows the distribution of Pearson’s R2 of the 10 noisy TF
networks (resulting in 10 × nTF correlation measures). Overall, the influence
is much more resistant to noise in the prediction of regulatory interactions.

To further compare these methods, the original TFA of all TF in the network
for which TF Binding Sites (TFBS) or public ChIP-seq data is available was
correlated to the TFA computed using only the validated targets of each TF.
The TFA of all regulators was computed using the original inferred network
and on all samples of the dataset. Three networks were then derived from the
original one by selecting only regulatory interactions present in one of the three
datasets of regulatory evidences : ChEA and ENCODE for ChIP data and a
collection of TFBS model. These three refined networks were used to compute
a validated TFA with the three methods. Figure 3 shows the distribution of
Pearson’s correlation (R2) for each TF between its activity measured with the
original and in the validated network.

The CoRegNet influence accurately predicts real TF activation

Finally, these three methods were tested on a dataset in which the activation
status of the TF PPARγ is known (data published in [Böck et al., 2014]). In
essence, urothelial cells were cultivated with a PPARγ agonist (Roziglitazone)
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Table of mean correlation
Noise Influence ROBNCA PLS
5% 0.99 0.92 0.93
10% 0.98 0.86 0.91
20% 0.97 0.75 0.54

Figure 2: Robustness of TFA measures to network errors. Distribution
and mean of Pearson’s correlation R2 between the original TFA and the one
computed with a partially permuted networks. * : equality rejected by two tail
Student’s test with α > 10−5

in combination with PD153035 to prevent an EGFR-dependent phosphorylation
and inhibition of PPARγ [Varley et al., 2009, Böck et al., 2014]. The cells were
sampled at various times after the activation of PPARγ resulting in a time
series (6 hours, 24 hours, 3 days and 6 days). In this experimental setting,
PPARγ exhibits null to weak activation at confluence (starting at day 3) in
non-treated cells, a modest activation as soon as 6 hours and to reach full
transcriptional activation at 24 hours and maintain this state in treated cells.
Based on these transcriptomes, the activity of PPARγ was computed using the
three tested methods, including the influence of the CoRegNet package. The
results are shown in figure 4.

The influence measure is concordant with the expected state of PPARγ ac-
tivity whereas the ROBNCA method does not detect PPARγ activation at 24
hours nor a small increase at confluence in non-treated cells. The PLS based
measure of TFA shows less difference between the two type of cultures (treated
and non-treated), especially at day 6.
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Table of mean correlation
Evidence Influence ROBNCA PLS

ChEA 0.96 0.51 0.49
ENCODE 0.97 0.72 0.67

TFBS 0.93 0.42 0.19

Figure 3: Validation of TFA measures. Distribution and mean of the Pear-
son correlation R2 between the original TFA and the one computed with a
partially permuted network. * : equality rejected by two tail Student’s test
with α > 10−5.

2 Material and methods

Datasets

The transcriptomic data used throughout the study is a set of 179 transcriptomic
profiles of Human bladder cancer samples and 4 normal bladder samples (the
CIT dataset) [Rebouissou et al., 2014, Biton et al., 2014]. The cancer samples
were also profiled for Copy Number Aberration (CNA) using CGH (comparative
genome hybridization) chips.

The additional Human regulatory evidences originated from several sources.
ChIP-seq or ChIP-on-chip data were directly downloaded from the ChEA2
database [Kou et al., 2013]. The Human ENCODE ChIP-seq data was recovered
from the UCSC genome browser (Human hg19 February 2009 genome assembly)
by selecting all narrow ChIP-seq peak (ENCODE chip V3) within -5000 bp to
+2000 bp around a Transcription Start Site of a gene with a non-null Human
genome organization Gene Nomenclature Committee (HGNC, genenames.org)
symbol.

Human Transcription Factor Binding Sites (TFBS) models in the form of Po-
sition Weight Matrices (PWM) were recovered through the MotifDB R/Bioconductor
package [Shannon, 2014] which references models from three different stud-
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Figure 4: Transcription Factor Activity of PPARγ. Each time point
correspond to 3 to 4 replicates. TFA for each methods was centered to 0 for
visualization purpose.

ies [Portales-Casamar et al., 2009, Jolma et al., 2013, Xie et al., 2010]. This
collection was complemented by the HOCOMOCO database of Human TFBS
[Kulakovskiy et al., 2012]. When several models were available for the same
Transcription Factor (TF), the PWM with the highest Information Content (in
bits, see Stojnic and Diez [2014]) was kept. The promoter sequences (using the
same coordinate that were used for the ENCODE ChIP-seq) were scanned for
these sequences using the PWMEnrich R/Bioconductor package [Stojnic and
Diez, 2014].

Human Protein-Protein Interactions (PPI) were downloaded from four dif-
ferent databases : HIPPIE [Schaefer et al., 2012], STRING [Franceschini et al.,
2012], HPRD [Prasad et al., 2009] as well as from the FANTOM study of TF
physical interaction through Mammalian Two Hybrid [Ravasi et al., 2010].

The large-scale regulatory network used throughout the following experi-
ments is the result of the h-Licorn algorithm available in the CoRegNet pack-
age applied with default parameters on the CIT bladder cancer dataset.
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Co-regulatory network inference

The h-Licorn regulatory network inference algorithm implemented in CoReg-
Net requires a gene expression dataset and a set of TF. A list of Human tran-
scription factors necessary to the construction of the regulatory network was
compiled from the TRANSFAC database [Matys et al., 2006] and the FAN-
TOM consortium [Ravasi et al., 2010] and is provided as an internal dataset of
the package.

For each target gene g, i.e. non-TF coding genes, h-Licorn [Elati et al.,
2007, Chebil et al., 2014] uses a discretized version of the transcriptomic data to
identify a set of at least n candidate Gene Regulatory Networks GRN1, GRN2

, · · · , GRNn. For a given gene, g, aGRN is composed of a set of co-activators
(A) and a set of co-inhibitors (I), GRN = (A, I, g) in which A and I are sets
of TF where both cannot be empty and are non-intersecting. For all extracted
GRN , a linear model is used to estimate the expression of g as follow:

ĝ = β +

q+p∑
j=1

αj ∗ rj + αa

q∏
k=1

ak + αi

p∏
l=1

il

with q the number of co-activators q = |A|, p the number of co-inhibitors p = |I|
and rx, ax and ix the expression of a regulator with ri ∈ A ∪ I. ĝ is an
estimation of the continuous expression of g. In this model, the regulators
are predictor variables and the expression of the target g is considered as the
response. Interaction terms are added for co-activators and co-inhibitors to
model the TF synergistic effect. In this setting, the adjusted coefficient of
determination R̄2 is used to score each proposed GRN model.

Based on this only, the continuous data can be used to refine the original
network by selecting for each gene g the GRN with the maximum R̄2.

In order to enrich large-scale regulatory networks using external regulatory
interactions, the CoRegNet package implements functions introduced by the
modENCODE consortium [Marbach et al., 2012b] and applies it to the selection
of local GRN models.

In essence, the goal is to score each GRN (each interaction in the original
method) using both the transcriptomic data and the integrated evidences to
select the set of best GRN . Each GRN is scored by the inference method h-
Licorn and by each of the integrated dataset. The number of interactions of a
given GRN found in a given dataset of regulatory interactions is divided by the
total number of predicted interactions (|A|+|I|). For cooperative evidences (TF-

TF) such as protein interactions, all possible pairs of activators ( |A|×(|A|−1)2 ) and

all pairs of inhibitors ( |I|×(|I|−1)2 ) are compared to the pairs of TF found in a
given dataset. Finally, GRN are given this proportion of validated interactions
as a score.

Following this, to each GRN is associated as many scores as their are inte-
grated regulatory and cooperative datasets in addition to the network inference
R̄2 score, all which range from 0 to 1. The original study [Marbach et al.,
2012b] proposes two approaches to merge the scores, an unsupervised and a
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supervised approach. While both are implemented in the CoRegNet package,
the unsupervised approach was shown by the authors to have better perfor-
mances [Marbach et al., 2012b]. It is simply an unweighted average of each of
the scores. Finally, for each gene, the GRN with the maximum merged score is
selected.

Cooperative regulators are defined as a set of regulators that are together
necessary for the regulation of their target genes. To extract these set of co-
regulators, all pairs of regulators which were found by h-Licorn to be co-
activators or co-inhibitors of at least one gene, in at least one GRN, are consid-
ered as potential co-regulators in the studied context. Then, only those pairs
which have a significant overlap of target genes using Fisher’s exact test are
predicted as co-regulators (with a 1% FDR control).

Transcription factor influence

The estimation of the influence of a TF requires a regulatory network structure
defining for each TF a set of activated genes a and a set of inhibited genes i. The
influence is then computed for a given sample using the average and standard
deviation of the expression of these sets of genes (noted X̄a and X̄i for the mean
and s2a and s2i for the standard deviation). For each TF and in each sample the
influence is computed as follow :

Xa −Xi√
s2a
|a| +

s2i
|i|

with |a| and |i| the number of activated and inhibited genes respectively.
Transcription Factor Activity (TFA) measurements were previously pro-

posed. In order to evaluate the proposed measure of influence, two other linear-
based methods of TFA predictions were used : an efficient implementation of the
Network Component Analysis ROBNCA [Noor et al., 2013] and a Partial Least
Square PLS-based method [Boulesteix and Strimmer, 2005]. These methods
usually assume a trustful structure to estimate TFA [Liao et al., 2003]. How-
ever, network inference methods often predicts a substantial number of false
regulatory interactions (e.g. low performance of the DREAM challengers in
yeast, Marbach et al. [2012a]). Therefore TFA prediction methods should be
able to cope with the noise, i.e. the prediction errors, in the networks. There-
fore a first evaluation of the influence as a measure of TFA is its robustness to
noise in the input network.

Integrative visualization of transcriptional activity

The visualization tool is based on a shiny application (shiny.rstudio.com), a
web-page framework for R. The application has two pages, the main interactive
analysis titled Co-regulation and visualization and the network Snapshot page.
The Co-regulation page is divided in three parts (see figure 5) corresponding to
a control panel, an interactive view of the co-regulator network and a plotting
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panel to display network or TF-related data. The color of the nodes reflects the
activity of the TF in the selected subtype as shown in figure 9 for two subtypes
of bladder cancers.

Figure 5: The visual application. Screenshot of the Shiny/R web application
launched in CoRegNet. In the top left corner, a control panel lists the samples
and sample subtypes to analyze, the number of minimum GRN to select signif-
icant cooperative interactions and an input to search for a particular TF in the
network. In the right part, an interactive Cytoscape javascript widget display
the network of co-regulators. The color of the nodes reflects the activity of the
TF in the selected subtype, red, high activity; blue low activity. The bottom
part of the page contains a plot reactive to action performs on the network.

When no nodes are selected in the Cytoscape widget, a heatmap of the
TF influence is displayed. When several nodes are selected, the heatmap will
contain only the influence of the selected TF. The selection of a single TF will
display a multi-layer heatmap for each type of information given as an input to
the application. An example is shown in figure 6.

Finally, when additional regulatory evidences were integrated in the network,
the Cytoscape network will display these interactions in addition to the inferred
co-regulation interactions as shown in figure 7. Regulatory evidences will be
displayed as directed edges between TF while cooperative evidences will be
shown as undirected edges.
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Figure 6: Local TF related heatmap. Expression is color coded from green to red
(low to high) and the influence from blue to red (low to high). Heatmaps display
one sample per column. The first heatmap color codes the sample classification.
The second shows the Copy Number status of the select TF. The third and
fourth show the expression and influence values of the selected TF. Finally, the
fifth and sixth heatmap display the expression of the activated and repressed
genes respectively.

Figure 7: Multiple type of interactions between co-regulators inferred by
CoRegNet. Grey : predicted cooperative interactions. Green : regulatory
interactions from the ENCODE ChIP-seq data. Purple : regulatory interac-
tions from the CHEA2 ChIP data. Red : protein interaction from the STRING
database.

3 Case study

The gene expression data contains the expression of 18,901 genes in 183 sam-
ples. The unfiltered regulatory network inferred using the h-Licorn algorithm
resulted in a regulatory network of 1004 TF and 9,486 target genes. The in-
fluence was computed in the same samples for TF with a sufficient number of
target genes, at least 10 activated and 10 repressed genes, resulting in a matrix
of the influence of 815 TF in the 183 samples. The samples were classified using
the TCGA classification [Network, 2014] as in [Biton et al., 2014].
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To identify driver TF, the effect of copy number gain on high influence was
tested using Student’s t-test to compare the influence of samples with gain to the
other samples. Figure 8 shows a plot of the log p-value of this test in association
with the mean influence of each TF in each subtype.

Figure 8: Subtype influence and CNA. Each point represents a TF in a
given subtype distinguishable by its color. Green points correspond to the
TCGA luminal 1 subgroup. Blue points correspond to the TCGA luminal 2
subgroup. Purple points correspond to the TCGA IV subgroup. Red points
correspond to the TCGA basal-like subgroup (TCGA III).

PPARγ shows both a high influence in the TCGA Luminal 1 bladder cancer
subtype and a high concordance between copy number gain and increase tran-
scriptional activity. In line with recent findings [Choi et al., 2014, Biton et al.,
2014], this result suggests PPARγ as a driver TF of the luminal subtype I, in
which it is the third most active TF.

FOXA1 is a key effector of the activity of PPARγ in normal urothelial cells
[Varley et al., 2009], which is responsible for the urothelial differentiation fea-
tures observed in the luminal subtypes of bladder cancer. The most significant
co-regulator of FOXA1 in the network was found to be PPARγ. Moreover, a
known co-factor of FOXA1 in luminal breast cancer, GATA3 [Kong et al., 2011],
was identified as the third most significant co-regulators of FOXA1.
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Yves Denoux, Vincent Molinié, Dimitri Vordos, Agnès Laplanche, Pascale
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Figure 9: Subtype specific co-regulator network. The color of each TF/node is
based on the mean influence in all samples of the subtype.
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